
Computers & Security 125 (2023) 103060

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

IoT malware classification based on reinterpreted function-call graphs

Chia-Yi Wu

a , Tao Ban

b , ∗, Shin-Ming Cheng

a , c , Takeshi Takahashi b , Daisuke Inoue

b

a Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
b National Institute of Information and Communications Technology, Koganei, 184-8795, Tokyo, Japan
c Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan

a r t i c l e i n f o

Article history:

Received 2 September 2022

Revised 11 November 2022

Accepted 10 December 2022

Available online 13 December 2022

Keywords:

Cybersecurity

IoT malware analysis

Machine learning

Static analysis

Graph embedding

a b s t r a c t

Various malware and cyberattacks have arisen along with the proliferation of IoT devices. The evolving

malware targeting IoT devices calls forth effective and efficient solutions to protect vulnerable IoT de-

vices from being compromised. In this paper, we investigate the feasibility of a state-of-the-art graph

embedding method, graph 2 v ec, for performing family classification for IoT malware, with promising re-

sults reported. To further improve the generalization performance of the classifiers based on graph 2 v ec-

extracted features, we propose two new mechanisms to improve the quality of feature representation.

First, we unify user-defined function calls by reinterpreting the opcode sequences therein to better cap-

ture the semantics of the function-call relationship in malware binaries. Then, we integrate literal infor-

mation into the graph 2 v ec embedding of the function call graph to achieve better discriminant ability. To

prove the effectiveness of the proposed scheme, we carried out performance comparison on a large-scale

dataset containing more than 108K malware binaries collected from seven CPU architectures. The accu-

racy rates obtained by five widely adopted classifiers on malware family classification are improved by

2%, on average, by adopting the two proposed mechanisms. Specifically, when combined with the pro-

posed approach, the support vector machine classifier obtained an accuracy rate of 98.88% on malware

family classification, outperforming known function-call-graph (FCG)-based methods and previous work

on static malware analysis.

© 2022 Elsevier Ltd. All rights reserved.

1

c

c

r

m

c

e

m

l

2

y

w

e

s

d

g

u

w

a

M

c

e

d

t

i

n

i

r

a

i

m

k

e

t

h

0

. Introduction

While the popularity of Internet of Things (IoT) devices has fa-

ilitated digital life, it has also attracted various malware attacks,

asting a shadow on digital security. In particular, the source code

elease of malware programs such as Mirai has led to numerous

alware variants, rendering the protection of IoT devices more

hallenging (Chaganti et al., 2022; Costin and Zaddach, 2018; Galal

t al., 2015). A pressing need exists to devise effective and efficient

echanisms to detect and categorize IoT malware to achieve re-

iable protection for IoT devices (Kuang et al., 2020; Kumar et al.,

022; Wazzan et al., 2021).

Recent research suggests that when combined with static anal-

sis, graph-feature-based approaches can successfully model mal-

are behavior and achieve good prediction performance (Alasmary

t al., 2019; Muzaffar et al., 2022). The syntactic and semantic

tructure of malware binaries can be represented as graphs at

ifferent levels, e.g., function call graphs (FCGs) and control flow

raphs (CFGs). Representations of malware programs as graphs
∗ Corresponding author.

E-mail address: bantao@nict.go.jp (T. Ban) .

t

d

t

ttps://doi.org/10.1016/j.cose.2022.103060

167-4048/© 2022 Elsevier Ltd. All rights reserved.
sually yield complicated structures with overwhelming capacity,

hich call forth an efficient transformation before it can be taken

s input to a learning algorithm (Vinayaka and Jaidhar, 2021).

eanwhile, significant research progress has been made on the so-

alled graph embedding techniques in the past few years. Graph

mbedding algorithms (Xu, 2021) can effectively convert high-

imensional sparse graphs into low-dimensional, dense, and con-

inuous vector spaces while preserving the semantics presented

n the graph structures. With the learned vector representation,

ode similarity in the original complex graph space can be eas-

ly quantified in the embedded vector space using standard met-

ics and then can be effectively exploited by subsequent learning

lgorithms. Nevertheless, a systematic assessment of the feasibil-

ty of applying state-of-the-art graph embedding methods for IoT

alware analysis has yet to be performed.

In this paper, we propose to apply the state-of-the-art method

nown as graph 2 v ec (Narayanan et al., 2017a) to perform graph

mbedding for FCGs extracted from malware binaries. We propose

wo mechanisms to enhance the discriminating information cap-

ured by graph 2 v ec during graph embedding. First, we unify user-

efined function calls by reinterpreting the opcode sequences in

he malware binaries. This operation helps reduce the graph’s size

https://doi.org/10.1016/j.cose.2022.103060
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.103060&domain=pdf
mailto:bantao@nict.go.jp
https://doi.org/10.1016/j.cose.2022.103060

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

a

s

u

i

d

m

i

(

s

t

(

e

s

i

t

i

e

r

i

a

l

S

y

r

a

S

F

2

a

c

2

l

o

t

t

n

t

o

(

c

i

s

a

d

a

w

s

r

a

v

O

d

r

2

c

I

p

p

g

c

s

e

t

f

m

i

s

a

a

e

s

b

r

2

c

m

t

F

o

n

a

a

a

i

l

p

m

n

t

e

r

i

1

f

t

O

s

t

y

w

nd enables more precise modeling of the function-call relation-

hip. Second, we realize a new implementation of graph 2 v ec that

ses function names to identify the vertices in the graph. Integrat-

ng literal information into the graph embedding can capture more

iscriminant information in the data and improve the conditional

odels’ generalization performance.

To evaluate the proposed malware classification scheme, we

mplement five widely adopted classifiers, namely, random forest

RF) (Ho, 1998), k -nearest neighbors (k NN) (Hastie et al., 2009),

upport vector machine (SVM) (Cortes and Vapnik, 1995), mul-

ilayer perceptron (MLP) (Haykin, 1999), and logistic regression

LR) (Hosmer and Lemeshow, 20 0 0). We carry out performance

valuation on a large-scale dataset consisting of 108,616 malware

amples compiled on seven different CPU architectures. The exper-

mental results show that by adopting the proposed mechanisms,

he accuracy rates of the evaluated classifiers on malware fam-

ly classification are improved by 2% on average. Among the five

valuated classifiers, SVM demonstrates the best performance and

eached an accuracy of 98.88% when evaluated by 5-fold strat-

fied cross-validation. It outperforms known FCG-based methods

nd previous work of IoT malware analysis based on static features.

The main contributions of this paper are summarized as fol-

ows.

• We present a feasibility study and performance evaluation of

applying graph embedding methods to analyze IoT malware.

• We propose a process to reinterpret UDFs corresponding to

identical opcode sequences to enhance the semantics of FCGs.

• We develop a new implementation of graph 2 v ec to account for

the literal information of function names in the learning pro-

cess.

• We demonstrate the effectiveness of the proposed scheme us-

ing extensive numerical studies on a large-scale benchmark

dataset.

The remainder of this paper is organized as follows.

ection 2 reviews previous works related to malware anal-

sis. Then, Section 3 introduces the motivation behind our

esearch. Then, Section 4 elaborates the proposed scheme. In

ddition, Section 5 evaluates the performance of the proposal.

ection 6 discusses the limitations of the proposed scheme.

inally, Section 7 concludes the paper.

. Background and related work

In this section, we introduce the background of IoT malware

nd review previous work on IoT malware detection and classifi-

ation.

.1. IoT malware

IoT devices provide considerable convenience to today’s digital

ife. However, due to the resource constraint feature and the lack

f user security awareness, IoT devices have become the most cap-

ivating target of malware attacks. Among the numerous attacks

hat harm IoT devices, IoT botnet is the most notorious. An IoT bot-

et is a network of hijacked IoT devices infected by a botnet tool

hat allows hackers to take control. Botnets can be abused to send

ut spam or conduct attacks such as distributed denial of service

DDoS) attacks.

The most famous attack of IoT malware was the DDoS attack

aused by Mirai (Antonakakis et al., 2017; Marzano et al., 2018)

n 2016, which targeted systems operated by the domain name

ystem (DNS) provider Dyn. The provider was hit on 21 October

nd remained under sustained assault for most of the day, bringing

own sites including Twitter, Reddit, GitHub, Amazon.com, Netflix,

nd many others in Europe and the US (Guardian, 2022). Another
2

ell-known malware family is Hajime (Herwig et al., 2019), which

earches for systems to infect by scanning the Internet for systems

unning telnet on port 23/TCP and then tries to log in with default

ccounts and passwords. Once logged in, it takes control of the de-

ice and uses peer-to-peer connections for command and control.

ther well-known IoT malware families include Dofloo and Xord-

os, which have also launched many large-scale DDoS attacks in

ecent years.

.2. Previous work on malware analysis

We surveyed related research on malware detection and family

lassification to devise an effective and efficient scheme to protect

oT devices from malware infection. Note that most reviewed ap-

roaches were originally designed for malware protection on other

latforms, such as Windows or Android. While some ideas can be

eneralized to IoT malware analysis, others are not directly appli-

able because of the CPU architecture diversity and resource con-

traints enjoyed by IoT devices. For example, dynamic analysis –

xecuting binary programs in a sandbox environment to moni-

or their run-time behavior – has been the most effective means

or Windows/Android malware analysis. However, in regard to IoT

alware, dynamic analysis tends to suffer difficulties in perform-

ng consistent analysis on varying CPU architectures. Moreover, re-

ource constraints on IoT devices tend to render on-device dynamic

nalysis infeasible. Therefore, we focus on surveying the static-

nalysis-based research on malware analysis.

Static analysis consists of the analysis of a program without

xecuting it. According to the characterizing features used in the

tudy, the related work can be classified as binary-based, opcode-

ased, graph-based, API-based, and others. Table 1 summarizes the

elated work focusing on efficient static analysis.

.2.1. Binary-based methods

Executable files, a.k.a. binaries, are binary files containing ma-

hine code for the computer to execute. As the form in which

alware is distributed, a binary carries all necessary information

hat enables the program’s execution in the target environment.

or malware analysis, binary files are often treated as sequences

f bytes.

Raff et al. (2018) proposed the MalConv model, a convolutional

eural network (CNN) that takes the sequences of bytes in binaries

s a whole for portable executable (PE) malware detection. With

 model trained over 40K training samples, they reported 94.0%

ccuracy on a testing set containing more than 77K Windows PEs.

Su et al. (2018) proposed extracting one-channel grayscale

mages that are converted from binaries and then utilizing a

ightweight CNN to classify IoT malware. They reported that the

roposed system could achieve 94.0% accuracy for detecting DDoS

alware from benignware and 81.8% accuracy for classifying be-

ignware and two major malware families.

Wan et al. (2020) devised an N-gram-based method to explore

he discriminating information stored in the byte sequences at the

ntry points of executable programs. They reported 99.96% accu-

acy for malware detection and 98.47% accuracy for malware fam-

ly classification on a dataset consisting of 111K benignware and

11K malware samples.

The related work listed above takes in byte sequences as input

eatures for the learning models. It usually results in very fast fea-

ure extraction, which can, in turn, enable fast malware protection.

n the other hand, the byte sequences in the malware binaries are

ubject to simple obfuscation techniques such as dead-code inser-

ion and instruction substitution (You and Yim, 2010). They may

ield degenerated generalization performance for evolving IoT mal-

are. Compared with binary features, the FCG features adopted in

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060
T

a
b

le

1

P
re

v
io

u
s

w
o

rk

o

n

m

a
lw

a
re

a

n
a

ly
si

s
b

a
se

d

o

n

st

a
ti

c
a

n
a

ly
si

s.

A
u

th
o

r
P

la
tf

o
rm

D

a
ta

se
t

T
a

sk

A
cc

u
ra

cy
(%

)
Fe

a
tu

re

ty

p
e

A
lg

o
ri

th
m

(s
)

B
e

n
ig

n
w

a
re

M
a

lw
a

re

R
a

ff
e

t
a

l.

(2

0
1

8
)

W
in

d
o

w
s

5
7,

3
4

9

6
0

,0

0

0

D
e

te
ct

io
n

9
4

.0

B
in

a
ry

D
e

e
p

le

a
rn

in
g

(C

N
N

)

S
u

e

t
a

l.

(2

0
1

8
)

�

Io
T

1
2

2

2
4

3

�

C
la

ss
ifi

ca
ti

o
n

8
1.

8

B
in

a
ry

D
e

e
p

le

a
rn

in
g

(C

N
N

)

1
2

2

2
4

3

D
e

te
ct

io
n

9
4

.0

B
in

a
ry

D
e

e
p

le

a
rn

in
g

(C

N
N

)

W
a

n

e

t
a

l.

(2

0
2

0
)

�

Io
T

11
1

K

11
1

K

�

C
la

ss
ifi

ca
ti

o
n

9
8

.4
7

B
y

te

se

q
u

e
n

ce

�

S
V

M

11
1

K

11
1

K

D
e

te
ct

io
n

9
9

.9
6

B
y

te

se

q
u

e
n

ce

�

S
V

M

K
a

n
g

e

t
a

l.

(2

0
1

6
)

A
n

d
ro

id

-
1

2
6

0

�

C
la

ss
ifi

ca
ti

o
n

9
8

%

(F
1

-m
e

a
su

re
)

O
p

co
d

e

�

S
V

M

1
2

6
0

1
2

6
0

D
e

te
ct

io
n

9
8

%

(F

1
-m

e
a

su
re

)
O

p
co

d
e

�

S
V

M

B
a

n

e

t
a

l.

(2

0
1

9
)

�

Io
T

-
9

0
8

5

�

C
la

ss
ifi

ca
ti

o
n

U
p

to

1

0

0

.0

0

O
p

co
d

e

�

S
V

M
,

k
 N

N

G
ü

lm
e

z
a

n
d

S

o
g

u
k

p
in

a
r

(2
0

2
1

)
W

in
d

o
w

s
7

5
0

0

7
5

0
0

D
e

te
ct

io
n

9
9

.0

O
p

co
d

e

g

ra
p

h

�

R
F

A
la

sm
a

ry

e

t
a

l.

(2

0
1

9
)

�

Io
T

2
,9

9
9

2
9

6
2

�

C
la

ss
ifi

ca
ti

o
n

9
9

.3
2

C
o

n
tr

o
l

fl
o

w

g

ra
p

h

D
e

e
p

le

a
rn

in
g

(C
N

N
)

2
,9

9
9

2
9

6
2

D
e

te
ct

io
n

9
9

.6
6

C
o

n
tr

o
l

fl
o

w

g

ra
p

h

D
e

e
p

le

a
rn

in
g

(C
N

N
)

N
g

u
y

e
n

e

t
a

l.

(2

0
2

0
)

�

Io
T

6
,1

6
5

3
8

4
5

D
e

te
ct

io
n

9
8

.7

P
ri

n
ta

b
le

st

ri
n

g

g

ra
p

h

D
e

e
p

le

a
rn

in
g

(C
N

N
)

O
u

a

n
d

X

u

(2

0
2

2
)

A
n

d
ro

id

8
2

,0
1

0

5
0

,1
2

3

D
e

te
ct

io
n

9
7.

7
1

%

(F

1
-m

e
a

su
re

)
�

Fu
n

ct
io

n

fa

ll

g

ra
p

h

�

R
F

X
ia

o

e

t
a

l.

(2

0
2

0
)

A
n

d
ro

id

8
8

0

3
5

2
0

�

C
la

ss
ifi

ca
ti

o
n

9
5

.2
7

�

Fu
n

ct
io

n

ca

ll

g

ra
p

h

�

R
F

8
8

0

3
5

2
0

D
e

te
ct

io
n

9
9

.7
5

�

Fu
n

ct
io

n

ca

ll

g

ra
p

h

�

R
F

Z
h

a
n

g

e

t
a

l.

(2

0
2

0
)

W
in

d
o

w
s

-
1

0
,2

6
0

�

C
la

ss
ifi

ca
ti

o
n

9
9

.5
7

�

Fu
n

ct
io

n

ca

ll

g

ra
p

h

�

R
F

B
a

n

e

t
a

l.

(2

0
1

6
)

A
n

d
ro

id

5
2

,2
5

1

2
6

,3
9

8

D
e

te
ct

io
n

9
4

.0
9

A
P

I
ca

ll
,

p
e

rm
is

si
o

n
,

a
p

p

ca

te
g

o
ry

�

S
V

M

O
n

w
u

zu
ri

k
e

e

t
a

l.

(2

0
17

)
A

n
d

ro
id

8
.5

K

3
5

.5
K

D
e

te
ct

io
n

9
9

%

(F

1
-m

e
a

su
re

)
A

P
I

ca
ll

�

R
F,

k
 N

N
,

S
V

M

S
h

a
h

za
d

a

n
d

Fa

ro
o

q

(2

0
1

2
)

�

Io
T

7
3

4

7
0

9

�

C
la

ss
ifi

ca
ti

o
n

9
9

.8

E
LF

h

e
a

d
e

r
D

e
ci

si
o

n

tr

e
e

Le
e

e

t
a

l.

(2

0
2

0
)

�

Io
T

-
1

2
0

K

�

C
la

ss
ifi

ca
ti

o
n

9
8

.3
6

P
ri

n
ta

b
le

st

ri
n

g

�

S
V

M

W
u

e

t
a

l.

(2

0
2

1
)

�

Io
T

8
9

K

1
0

8
K

D
e

te
ct

io
n

9
9

.7
1

�

Fu
n

ct
io

n

ca

ll

g

ra
p

h

�

S
V

M

P
ro

p
o

se
d

a

p
p

ro
a

ch

�

Io
T

-
1

0
8

K

�

C
la

ss
ifi

ca
ti

o
n

9
8

.8
8

�

Fu
n

ct
io

n

ca

ll

g

ra
p

h

�

R
F,

k
 N

N
,

S
V

M
,

M
LP

,
LR

N
o

te
:

A

le

a
d

in
g

ch

e
ck

m
a

rk

in

co

lu
m

n
s,

in

cl
u

d
in

g

p

la
tf

o
rm

,
ta

sk
,

a
n

d

fe

a
tu

re

ty

p
e

,
in

d
ic

a
te

s
th

a
t

th
e

co

rr
e

sp
o

n
d

in
g

re

la
te

d

w

o
rk

h

a
s

th
e

sa

m
e

se

tt
in

g

a

s
th

e

p

ro
p

o
se

d

a

p
p

ro
a

ch
.

In

th

e

a

lg
o

ri
th

m

co

lu
m

n
,

th
e

le

a
d

in
g

m

a
rk

e
r

in
d

ic
a

te
s

th
a

t
th

e

co

rr
e

sp
o

n
d

in
g

m

e
th

o
d

is

im

p
le

m
e

n
te

d

in

th

e

e

x
p

e
ri

m
e

n
ts

.

t

w

t

2

a

f

n

l

f

o

s

e

i

y

a

c

t

a

m

t

c

s

t

g

t

t

p

t

o

t

y

s

a

t

i

i

2

t

m

t

r

s

t

t

6

a

C

p

w

m

P

a

e

s

3
his paper carry high-level behavioral information about the mal-

are binary and are considered more robust against code obfusca-

ion (Naseer et al., 2021).

.2.2. Opcode-based methods

An opcode, abbreviated from operation code, is the portion of

 machine language instruction specifying the operation to be per-

ormed. Opcode sequences, as the output of many reverse engi-

eering tools, carry fine-grained information about the execution

ogic of the program and have been widely adopted as the basis

or further analysis in related works.

Kang et al. (2016) proposed a method based on N-grams over

pcode sequences for Android malware detection and family clas-

ification. Their approach supports automated feature coverage and

liminates the need for domain knowledge to define the discrim-

nating features. On a dataset of 2520 samples, SVM classifiers

ielded a maximum F1-measure of 98% in both malware detection

nd malware classification with N = 3 and N = 4 , respectively.

Ban et al. (2019) proposed a multimodal analytical approach to

haracterize IoT malware. They showed that opcode sequences ob-

ained from static analysis and API sequences obtained by dynamic

nalysis provide sufficient discriminant information to classify IoT

alware with near-optimal accuracy. Their method achieved detec-

ion accuracy of up to 100% for CPU-specific analysis on a dataset

ontaining 9085 IoT malware samples collected from a honeypot

ystem.

Gülmez and Sogukpinar (2021) proposed a method based on

he opcode graphs of executables. They extracted the node de-

rees of self-connecting subgraphs of an opcode graph as the fea-

ure representations of the sample. Their method achieved a detec-

ion accuracy of up to 98% on a dataset of PE files containing 15K

acked and unpacked samples.

According to the survey in Naseer et al. (2021) , the opcode is

he most widely adopted feature type for static analysis because

f its low cost and strong discriminating nature. However, due to

he extremely fine granularity of opcode, a graph representation

ielded by opcode may show a size rendering fast analysis impos-

ible. In the proposed scheme, the opcode sequences are organized

s function calls – blocks of opcodes that realize particular func-

ionalities. Integrating opcode as function calls can not only signif-

cantly reduce the size for graph representation but also result in

mproved modeling of the malware behavior at a higher level.

.2.3. Graph-based methods

The malicious behavior of malware can be characterized by cer-

ain components in some representative structures obtained from

alware binaries that reflect the execution logic of the program. In

he literature, CFGs and FCGs are among the most widely adopted

epresentative structures to serve this purpose.

Alasmary et al. (2019) proposed deploying deep learning to the

tructural features extracted from CFGs to train malware detec-

ion models. They reported 99.66% accuracy for malware detec-

ion and 99.32% for family classification on a dataset comprising

K IoT samples. Structural features, including the number of nodes

nd edges, density, centrality, and shortest path, were inputs to the

NN model.

Nguyen et al. (2020) proposed extracting information from

rintable strings such as IP addresses, URLs, usernames, and pass-

ords presented in an FCG and generated a printable string infor-

ation graph (PSI graph). They then used a CNN to analyze the

SI graph for detecting malware. They reported 98.7% accuracy on

 dataset of 10,010 ELF IoT samples.

Ou and Xu (2022) proposed a method called S3Feature, which

xtends a function call graph by tagging sensitive nodes based on

ensitivity evaluation. They reported an F1-measure of 97.71% for

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

m

t

o

T

q

o

p

f

F

i

m

a

p

j

e

t

i

a

b

2

t

l

v

t

p

p

f

c

t

t

a

s

d

r

u

i

a

m

c

a

t

t

a

m

a

d

n

c

s

t

i

A

l

g

2

a

f

fi

3

d

c

m

i

e

c

o

T

e

t

i

w

f

m

i

t

c

3

s

t

i

3

v

b

Q

a

a

u

t

r

d

o

r

e

w

l

a

A

m

c

r

p

a

u

g

a

g

s

t

s

s

alware detection when S3Feature is combined with other fea-

ures.

Xiao et al. (2020) proposed a graph re-partition algorithm based

n an N-order subgraph to capture appropriate vibration behavior.

hey applied an improved term frequency-inverse document fre-

uency measure and information gain to learn the significant N-

rder subgraphs to represent crucial malware behavior. They re-

orted 99.75% accuracy for malware detection and 95.27% accuracy

or malware family classification on a dataset of 4400 samples.

Zhang et al. (2020) proposed combining features obtained from

CG vectorization and other nongraph features for better general-

zation performance. They reported 99.57% accuracy on a Windows

alware dataset of 10,260 malware samples provided by Microsoft

t Kaggle.

Built upon the FCG representation of IoT malware samples, the

roposed approach is closely related to the related work. The ma-

or difference from previous work resides in the following facts: By

xtracting the vector representations of the semantics in the graph

hrough graph embedding, we can capture essential discriminating

nformation from malware samples. The proposed methods can be

pplied to most graph representations that can model the malware

ehavior in syntactic or semantic means.

.2.4. API-based methods

Application programming interface (API), a software interface

hat offers a service to other pieces of software, is used in high-

evel programming to invoke system calls at the low level. It pro-

ides a cost-effective and comprehensive middle layer to model

he attack behavior of malware samples. Many successful ap-

roaches to identifying and extracting malicious behavior are re-

orted in the literature, ranging from techniques based on API call

requency analysis (Natani and Vidyarthi, 2013) to more sophisti-

ated detection schemes based on exploiting the probabilities of

ransitioning from API invocations (D’Angelo et al., 2021).

Ban et al. (2016) explored the potential of multimodal features

o enhance the detection accuracy of Android malware. The ex-

mined features included permissions, API calls, and meta-features

uch as the category information and application package (APK)

escriptions. Using a linear SVM classifier, they reported an accu-

acy of 94.09% on an Android dataset composed of 78,649 apps

sing the API call and app category features.

The MaMaDroid detector introduced

n Onwuzurike et al. (2017) abstracted the API calls performed by

n Android app to their package names or families and built a

odel from the sequences obtained from the call-graph Markov

hains. Modeling the malware behavior using the transition prob-

bilities between API calls improved robustness against evasion

echniques. MaMaDroid reported an effective detection rate (up

o 99% F1-measure) on a dataset of 8.5K benign Android apps

nd 35.5K malicious Android apps collected over six years. It

aintained its detection capabilities for long periods.

As reported by the literature survey in Naseer et al. (2021) ,

s far as dynamic analyses are concerned, API sequences captured

uring the program’s execution time are reported as the most sig-

ificant data type that facilitates malware analysis. However, API

alls are not as preferable as opcode and derived data in regard to

tatic analysis. This is partially because capturing activity indica-

ors finer grained than API, e.g., opcodes, are extremely expensive

n dynamic analysis but comparatively affordable in static analysis.

s a special type of high-level function call, APIs together with low

evel function calls such as system calls and UDFs, constitute to the

raph representation of FCGs analyzed in the proposed approach.

.2.5. Other static features

Many other types of information can be obtained from static

nalysis and serve as behavioral indicators of malware.
4
Shahzad and Farooq (2012) proposed composing a feature set

rom the header of Linux executable and linkable format (ELF)

les. Using information gain as preprocessing filters, they selected

83 attributes with high classification potential and performed the

ata evaluation. They reported that the classical rule-based ma-

hine learning algorithms and bio-inspired classifiers can reach

ore than 99% detection accuracy on a Linux ELF dataset consist-

ng of 1443 samples.

Lee et al. (2020) proposed a method based on printable strings

xtracted from the bodies of binaries. They reported that an SVM

lassifier affiliated with feature selection could yield an accuracy

f 98.36% on a large-scale dataset consisting of 120K IoT samples.

hey also demonstrated the effectiveness of printable strings as an

ffective f eature for cross-platform IoT malware classification.

Most of the related work surveyed in this section creates vec-

or representations for malware to be further analyzed by learn-

ng algorithms. These vector representations can be combined

ith the embedding vectors yielded by the proposed scheme

or possible performance gain when affordable. In our experi-

ent, we integrated a subset of the structural features introduced

n Alasmary et al. (2019) as a reinforcement to the embedding vec-

or yielded by the proposed approach for better malware classifi-

ation performance.

. Motivation

In this section, we introduce the motivation behind our re-

earch focusing on selecting the most appropriate graph represen-

ation for malware and improving the semantics capturing capabil-

ty for graph 2 v ec.

.1. Graph representation for malware samples

Existing graph-based malware analysis approaches typically in-

olve a step to select a suitable graphical representation of the

inaries as the basis for further analysis. CFGs (Ngo et al., 2020;

iang et al., 2022), FCGs (Kawasoe et al., 2021; Li et al., 2021),

nd PSI graphs (Nguyen et al., 2020) are among the most widely

dopted graphical representations.

For an accurate representation of the flow inside a program

nit, CFGs capture the interaction of low-level operations during

he program’s execution. A drawback of CFGs is that even bina-

ies with moderate size yield extraordinarily large graphs, ren-

ering the processing and analysis very time-consuming. On the

ther hand, FCGs record only calling relationships between sub-

outines during program execution. By ignoring the low-level op-

rations, FCGs can yield a more concise graphical representation

hile maintaining the essential information about the execution

ogic of the program.

PSI graphs extract information from printable strings such as IP

ddresses, URLs, usernames, and passwords presented in an FCG.

s most of these printable strings are composed at the program-

ing phase, PSI graphs can serve as strong descriptors for binaries

ompiled from the same source. Compared with FCGs, PSI graphs

equire additional resources and time to extract and reorganize

rintable strings. On the other hand, information other than print-

ble strings in FCGs is ignored by PSI graphs, which may result in

nwanted information loss.

For the above given reasons, an FCG is chosen as our study’s

raphical representation for IoT malware. Fig. 2 shows an ex-

mple of an FCG extracted from a malware program. In the

raph, the vertices represent functions, and the edges corre-

pond to the caller-callee relationship between them. According

o Li et al. (2021) , by representing the flow at the pertinent ab-

tract level of function calls, FCGs can avoid obfuscation at the in-

truction level and byte level. Moreover, in terms of IoT malware,

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

Fig. 1. Function-call graphs (partial) of a Mirai sample before and after the interpretation of user-defined functions.

Fig. 2. Two similar user-defined functions in a Mirai sample.

F

w

t

o

i

m

3

a

t

W

U

p

n

F

t

g

i

p

a

fl

c

t

w

r

F

g

g

v

t

CGs can capture CPU-independent semantics of the same mal-

are. When a source file is compiled for different CPU architec-

ures, the obtained binary files will be completely different because

f the distinct instruction sets, but the FCGs may track their sim-

larity at the function-call level. This information is beneficial for

alware analysis across different CPU architectures.

.2. Improvement to graph 2 v ec

We encountered two problems that may negatively impact the

nalysis when applying graph 2 v ec (Narayanan et al., 2017b) to ex-

ract graphic embedding features from FCGs for IoT malware.

User-defined functions (UDFs) are the first problem for FCGs.

hile API and system calls are essential components of an FCG,

DFs also contribute. Determined by the convention of the com-

iler, UDFs are often assigned temporary identifiers for each run-

ing instance on an ad hoc basis. Take the two UDFs shown in
5
ig. 1 as an example. The same UDF is assigned two different iden-

ifiers based on memory location. Duplicated UDFs with distin-

uishing names induce unnecessary computation costs and lead to

ll-formed FCGs with erroneous semantic information. To solve this

roblem, we propose a reinterpretation process for UDFs: UDFs

re unified by investigating the opcode sequences representing the

ow of the detailed operation executed therein. Then, the UDFs

orresponding to the same opcode sequence are assigned an iden-

ical universal identifier (UUID) so that the reuse of the same UDFs

ill be accounted for in the analysis. Unifying the UDF names by

einterpreting opcode sequences therein is expected to reduce the

CG size and improve the prediction accuracy.

The second problem is associated with the implementation of

raph 2 v ec. Originally, graph 2 v ec was designed to handle abstract

raphs so that no identifying information is stored in the graph

ertices. Therefore, common implementations use the degree, i.e.,

he number of edges that are incident to the vertex, as identifiers

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

Fig. 3. Overview of the proposed IoT malware family classification scheme

i

f

n

v

t

t

4

m

a

s

a

w

p

m

t

p

o

g

a

b

t

W

m

4

d

e

n

n

Fig. 4. A partial list of function calls extracted from a Mirai sample.

b

t

o

4

t

s

t

b

s

T

u

n

t

n the graph. Such implementations render a significant loss of in-

ormation in regard to the FCGs. In this paper, we implement a

ew version of graph 2 v ec that uses function names to identify the

ertices in the graph. Preserving semantics of function-call rela-

ionships is expected to capture more discriminant information in

he data and improve the prediction performance.

. Methodology

In this section, we elaborate the proposed approach for IoT

alware analysis based on reinterpreted FCG obtained from static

nalysis. As shown in Fig. 3 , the investigation is pursued in four

teps: reverse engineering, reinterpreting UDFs, feature extraction,

nd model building and evaluation. In the reverse engineering step,

e use radare 2 (Radare2) to perform static analysis on the in-

ut binaries and create FCGs. In the UDF reinterpretation step, we

atch user functions by their opcode sequences and assign UUIDs

o unique UDFs accordingly. In the feature extraction step, we

erform feature extraction on the reinterpreted FCGs. Two types

f features, namely, graph embedding features from an enhanced

raph 2 v ec (Wu et al., 2021) and structural features of graphs,

re combined for better generalization performance. In the model

uilding and evaluation step, we choose widely adopted classifiers

o formulate prediction models for malware family classification.

e use 5-fold stratified cross-validation to evaluate the perfor-

ance of the models.

.1. Reverse engineering

As Linux is the most popular operating system installed on IoT

evices, most malware arrives at victim devices in the form of ex-

cutable and linkable format (ELF) files. To disassemble the ELF bi-

aries, we adopt radare 2 , a complete framework for reverse engi-

eering. After the static analysis, radare 2 outputs a CFG, which can
6
e interpreted as an FCG representing the calling relationship be-

ween subroutines in the input binary. See Fig. 2 (a) for an example

f a part of the FCG returned by radare 2 .

.2. Reinterpreting user-defined functions

During the analysis, we found that UDFs constitute a substan-

ial portion of the vertices in the FCGs. Fig. 4 shows a fragmented

napshot of the subroutines found in a Mirai sample. Based on

he convention of the compiler, UDFs are often assigned identifiers

ased on the address where they are stored. Subroutine names

tarting with “fcn” correspond to the UDFs found in the binary.

hese UDFs form groups (printed with colored fonts in the fig-

re for better readability) that share strong similarities regarding

umerical indicators such as size and arguments. A closer look into

he opcode of the UDFs in the same group reveals that they are

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

Table 2

Comparison of the size of FCGs before and after UDF reinterpretation.

Malware Family

Mirai Tsunami Dofloo Bashlite Xorddos Android Average

Before 163.19 249.95 315.90 241.37 1153.21 468.27 431.98

Avg. vertices After 126.85 238.30 143.90 235.57 999.30 302.09 341.00

Reduction (%) 22.27 4.66 54.45 2.40 13.35 35.49 21.06

Before 418.74 616.98 671.70 554.36 3012.21 1236.18 1085.03

Avg. edges After 313.98 591.86 353.70 540.47 2591.11 738.12 854.87

Reduction (%) 25.02 4.07 47.34 2.51 13.98 40.29 21.21

a

U

t

g

b

f

“

p

t

a

U

t

f

i

b

t

t

d

r

b

a

u

t

o

F

i

i

t

S

t

s

o

e

a

n

a

v

m

t

4

p

l

f

f

4

F

n

o

f

s

t

e

c

t

D

n

g

D

c

t

t

D

fi

f

d

4

i

s

t

b

t

d

e

n

b

g

s

f

i

u

s

I

b

m

a

g

a

1 A rooted subgraph at vertex v i originates from v i and encompasses its neigh-

borhood of a certain order.
ssociated with the same opcode sequence. Therefore, the grouped

DFs are identical subroutines but are assigned unique names by

he compiler.

Fig. 1 shows snapshots of two of these subroutines in the red

roup of Fig. 4 . The opcode sequences highlighted in the red text

oxes are the same for the two subroutines. In the example, except

or the parameters after the command “jne” – equivalent to the

jump” command on common CPU architectures – and “mov”, the

arameters for the commands match exactly.

This discordance in naming UDFs negatively impacts algorithms

hat take function names as discriminating attributes for malware

nalysis. We perform the following reinterpretation procedure for

DF names to solve the problem. First, we collect all the UDFs in

he dataset to form a set. Then, we obtain the opcode sequence

or each of the UDFs. In this step, arguments of the opcodes are

gnored not only to cover the special case for jump-like commands

ut also to support free parameters in function calls. Then, using

he opcode sequences as signatures, each of the unique UDFs in

he set is assigned a UUID. Finally, the names of the UDFs in the

ataset are replaced by their UUIDs in the later analysis.

This reinterpretation procedure to treat UDFs as the same sub-

outine if they perform the same operation in the program can

enefit the analysis in the following aspects. First, it can solve the

mbiguous naming issue caused by the compiler. Second, it can

nify the same functions occasionally assigned different names in

he source code. Then, it can result in an improved representation

f semantics in the FCG, enhancing the generalization performance.

inally, it can lead to a reduction in the scale of the graph, result-

ng in improved learning and prediction efficiency. Take the UDFs

n Fig. 2 as an example. The FCG in (b) obtained after reinterpreta-

ion is much simpler than the FCG before reinterpretation in (a).

Table 2 compares the FCGs built from the dataset introduced in

ection IV-A before and after UDF reinterpretation. The table shows

hat the reduction in FCG size achieved via UDF reinterpretation is

ubject to variation according to the malware family. A maximum

f a 54.45% reduction in vertex numbers and 47.34% reduction in

dge numbers is achieved for Dofloo malware. The minimum of

 2.40% reduction in vertex numbers and 2.51% reduction in edge

umbers is achieved for Bashlite malware. The macro-average over

ll examined malware families amounts to a 21.06% reduction in

ertex number and 21.21% reduction in edge number. The experi-

ent section will further investigate the impact of UDF reinterpre-

ation on the effectiveness and efficiency of subsequent analysis.

.3. Feature extraction

The feature extraction step takes the reinterpreted FCGs as in-

ut and returns vector representations of the graph as results. Fol-

owing the idea in Wu et al. (2021) , we create two types of features

rom the graphs, namely, structural features and graph embedding

eatures, to facilitate further analysis.

.3.1. Graph structure features

Graph properties that capture the structural information of an

CG can serve as characterizing features for the corresponding bi-
7
ary. Features defined on nodes and edges of the graph are easy to

btain and are inherently obtained in vector form. We adopt the

eatures suggested by Alasmary et al. (2019) .

Let an FCG, denoted as G = { V, E} , be a structure amounting to a

et of vertices, V , connected by a set of directed edges, E. Each ver-

ex, v i ∈ V , represents a function found in the binary. Each directed

dge running from function v i to function v j , denoted as e i, j , indi-

ates that v i calls v j . Based on the above definition, we compute

he following structural properties for all input FCGs.

efinition 1. (Numbers of vertices and edges) The number of

odes and edges, denoted as v = | V | and e = | E| , respectively, are

eneral characteristics used to describe the scale of an FCG.

efinition 2. (Number of connected components) A connected

omponent (CC) of graph G , denoted as S, is a subgraph in which

he vertices are connected by the edges in E. The number of CC is

he cardinality of a set that contains all CCs of G , i.e., s = |{ S i }| .
efinition 3. (Density) The density, d, of a directed graph G is de-

ned as the closeness of all its edges to the number of edges for a

ully connected graph with the same vertex set. Formally,

(G) =

e

(v − 1) 2
. (1)

.3.2. Graph embedding features

The conventional graph properties listed above provide consol-

dated structural information of an FCG. On the other hand, the

emantics in the graph, i.e., the call relationships between subrou-

ines, are not reflected in these features. We resort to a graph em-

edding method, namely, graph 2 v ec, to explore the semantics in

he graph.

Graph 2 v ec, devised as a neural embedding framework to learn

ata-driven distributed representations of arbitrary-sized graphs,

njoys greater scalability, computing adaptability, and effective-

ess than conventional graph-based algorithms. Because its em-

eddings are learned in an unsupervised and task-agnostic manner,

raph 2 v ec can provide vector representations of graphs for down-

tream tasks such as data clustering and pattern analysis. The ef-

ectiveness and efficiency of graph 2 v ec for IoT malware analysis is

nvestigated in this study.

Graph 2 v ec is inspired by doc2 v ec (Le and Mikolov, 2014), which

ses a specialized skipgram model to learn representations of word

equences of arbitrary length as vectors of a predefined dimension.

t then extends document embedding models to obtain graph em-

eddings. Analogous to doc2 v ec, graph 2 v ec treats graphs as docu-

ents composed of rooted subgraphs 1 , which, in turn, are treated

s words. As graph 2 v ec was originally designed to treat abstract

raphs that do not carry identifying information on the vertices,

vailable implementations use vertex degree – the number of

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

Fig. 5. Enhancing graph 2 v ec by integrating literal information as vertex labels.

e

t

f

g

a

s

t

v

v

a

t

o

t

1

l

e

t

t

t

t

t

t

c

n

t

t

a

3

n

a

N

t

i

t

m

c

o

o

t

d

r

b

d

4

m

fi

fi

p

c

5

b

t

O

i

m

s

8

5

f

b

dges that are incident to a vertex – to differentiate different ver-

ices. Such an implementation leads to an unexpected loss of in-

ormation with respect to FCGs. Fig. 5 (a) shows an example of a

raph where the vertex degree (numbers on the vertices) is used

s the identifier of the vertices. The left figure shows the initial

tates of the graph when the vertex degree is assigned to the ver-

ices as the initial label. To obtain the order-1 rooted subgraph of a

ertex, graph 2 v ec performs a breadth-first search starting from the

ertex and records the neighbors it has traversed. Take vertex 3 ©
t the top-left corner as an example. Its neighborhood consists of

hree vertices, (2 ©, 3 ©, 4 ©), sorted in ascending order. Then, the label

f the vertex and its listed neighbors are used as the new label of

he order-1 subgraph. The right figure shows the result of order-

 subgraph generation, where the unique labels are replaced by

abeling numbers that have not been used for label compression,

.g., a vertex with label (3 ©, 2 © 3 © 4 ©) is relabeled 5 ©.

For an FCG, the function names of the subroutines carry essen-

ial behavioral information of the binary. The above implementa-

ion could result in a significant loss of semantics information from

he FCG. In our proposed implementation, we use literal informa-

ion of the subroutines, namely, function names, to label the ver-

ices in the FCG. Fig. 5 (b) shows how graph 2 v ec is performed on

he same FCG as in Fig. 5 (a) but with the new labeling scheme. To

larify the difference, we use circled letters to indicate the function

ames serving as vertex labels on the FCG. The left figure shows

he initial states of the graph when function names are given to

he vertices as initial labels. Note that vertices A ©, C ©, and D © are

ssigned different labels, although they have the same degree of

. After the first relabeling iteration, each vertex is assigned a

ew label that encodes the identifying information at the vertex

nd the function-call relationship within its order-1 neighborhood.

ote that the two vertices labeled 5 © in Fig. 5 (a) are now assigned

wo different labels, G © and I ©, as they carry different semantic

nformation.

Graph 2 v ec repeats the above relabeling process for m iterations

o obtain the order- m rooted subgraphs around each vertex. Here,

 determines how many consecutive subroutines are taken as the

ontext for each vertex. As a very large m value may result in

verfitting, we set m = 2 in the experiments following the rec-

mmendation in Narayanan et al. (2017b) . Then, graph 2 v ec takes

he set of all rooted subgraphs as its vocabulary and follows the

oc2 v ec skipgram training process to learn a D -dimensional vector

epresentation of each graph in the dataset. Finally, the graph em-

edding and structural features are combined to form a (D + 4) -

imensional vector as input for the subsequent classifiers.

.4. Classification methods

The vector representations yielded by graph 2 v ec can facilitate

ost available machine learning methods. In this section, we select
8
ve widely adopted algorithms that can handle large-scale classi-

cation tasks efficiently: RF, k NN, SVM, MLP, and LR. We construct

redictive models for malware family classification. The selected

lassifiers are briefly defined as follows.

• RF is an integrated learning method for classification or regres-

sion that operates by constructing a large number of decision

trees during training. For classification tasks, the output of the

RF is the class chosen by the majority of trees.

• k NN is a learning-by-example approach that learns relevant fea-

tures via local approximation. A binary is classified by a ma-

jority vote of its k nearest neighbors. The results of k NN indi-

cate how much discriminant information can be captured in the

vector representation.

• SVM is a supervised learning model that finds a hyperplane

with maximized margin to distinguish samples from two

classes. The SVM meets the needs for the malware detection

task where samples are divided into two categories, i.e., benign

and malicious. For the multi-class problem, as in malware fam-

ily classification, we follow the one-against-all convention. For

an M-class problem, we first construct M binary SVM classifiers,

each of which separates one class from the rest. Then, we de-

cide the predicted label by majority voting of all the classifiers.

• MLP is a class of feed forward artificial neural networks trained

using a supervised learning technique called back-propagation.

MLP is good for differentiating data that are not linearly sepa-

rable.

• LR is one of the most popular machine learning algorithms for

binary classification because of its simplicity and good perfor-

mance on a wide range of problems. LR models the probability

an event occurring by viewing the logarithm of the odds for the

event as a linear combination of one or more independent vari-

ables. LR can be generalized to multinomial logistic regression

for multi-class classification (Greene, 2012).

. Experiments

We evaluate the performance of the proposed approach com-

ined with the selected classifiers on malware family classification

o predict the category of malware binaries into known families.

ur experiments are based on scikit-learn (Pedregosa et al., 2011)

mplemented with Python 3.7. All the experiments are imple-

ented on a desktop PC with Ubuntu 16.04 LTS with the following

pecifications: x86 64 Intel(R) Core(TM) i7-7820X CPU @3.60 GHz,

 core, 128 GB DDR4 Memory.

.1. Evaluation dataset

As shown in Table 3 , we collected 108,616 malware binaries

rom VirusTotal and labeled them with malware family names

ased on the majority voting of the detection reports of major

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

Table 3

Sample distribution among different categories and CPU architectures.

ARM MIPS X86 SPARC X86-64 PPC UNKNOWN Total

Mirai 19,537 10,224 7824 5048 1083 4859 4815 53,390

Tsunami 424 375 1079 62 205 106 214 2465

Dofloo 958 107 213 0 37 0 0 1315

Bashlite 13,466 8731 8240 3163 3839 3465 5136 46,040

Xorddos 2 0 485 0 5 0 0 492

Android 3061 14 1425 0 413 1 0 4914

Total 37,448 19,451 19,266 8273 5582 8431 10,165 108,616

a

n

a

c

A

c

5

a

s

r

t

a

v

a

F

w

a

U

f

5

r

P

w

w

fi

s

t

o

h

p

c

v

d

p

D

r

c

v

t

p

n

t

p

t

i

c

v

i

c

k

t

γ
w

u

e

p

i

d

p

a

t

t

t

o

a

g

f

T

5

n

p

b

A

w

c

P

R

c

R

T

F

nti-virus vendors. These samples belong to six malware families,

amely, Mirai, Tsunami (Kaiten), Dofloo, Bashlite (Gafgyt), Xorddos,

nd Android. VirusTotal reported that these malware samples were

ollected from a variety of CPU architectures, including X86, MIPS,

RM, SPARC, X86-64, and PowerPC (PPC). Samples without CPU ar-

hitecture information are assigned to an UNKNOWN group.

.2. Visualization

To understand the data distribution, we use uniform manifold

pproximation and projection (UMAP) (McInnes et al., 2018) to vi-

ualize the data in 2D embedding space. UMAP is a nonparamet-

ic graph-based dimensionality reduction algorithm that consists of

wo steps: (1) calculating the graph representation of the dataset

nd (2) optimizing the low-dimensional embedding of the graph

ia stochastic gradient descent. This approach is computation-

lly efficient and can handle large-scale high-dimensional datasets.

ig. 6 shows the 2 D visualization results for a subset of 1,200 mal-

are samples with 512 dimensions. Malware exhibits good sep-

rability across families in the 2 D embedding space yielded by

MAP, which implies good prediction performance in malware

amily classification using the same feature representation.

.3. Parameter tuning

The generalization performance of machine learning algorithms

elies heavily on the hyperparameters used to train the models.

arameter tuning plays an important role in constructing models

ith robust prediction performance. For the selected algorithms,

e performed a grid search on the parameters using 5-fold strati-

ed cross-validation on the training set of each run. The parameter

etting that yielded optimal cross-validation performance was used

o train a prediction model using the full training set.

Fig. 7 shows an example of the parameter tuning procedure

n dimension D of the FCG features. The blue line depicts the

ighest cross-validation accuracy obtained by SVM with varying D

arameters; the red line represents the required time for 5-fold

ross-validation to be completed. The figure shows that the cross-

alidation accuracy increases with D from 128 to 512 but starts to

ecrease after D = 512 . Meanwhile, the training time to obtain the

rediction models increases along with D . This result suggests that

 = 512 is optimal to provide good prediction performance with a

easonable time cost.

Table 4 lists all the parameters subjected to a grid search pro-

ess for parameter tuning. For RF, the number of decision trees in-

olved in learning, T , impacts the performance and efficiency of

he trained model. A larger T generally leads to better prediction

erformance but increased computation time.

For k NN, the number of nearest neighbors, k , determines the

eighborhood size considered in the prediction. A larger k reduces

he effect of noisy samples but blurs the class boundaries.

For SVM, there are two performance-critical parameters:

enalty coefficient, C, and width parameter, γ . C determines the

olerance for training errors in the decision function. The higher C
9

s, the fewer training errors that can be tolerated, resulting in in-

reased training accuracy but easier overfitting. The smaller the C

alue is, the more training errors can be tolerated, and the eas-

er it is to obtain an underfitting classifier. The width parameter γ
omes with the most widely adopted radial-basis function (RBF)

ernel function. It implicitly determines the data distribution in

he new feature space induced by the RBF kernel. The choice of

affects the number of support vectors in the decision function,

hich in turn impacts the speed of training and prediction. We

se a grid search to evaluate the effect of C and γ independent of

ach other. This approach also enables fast evaluation of multiple

arameter settings using a simple parallel implementation.

For MLP, we adjust the hidden layer size, S, and the number of

terations, I. In a neural network, S determines the complexity of

ecision functions can be implemented and has a considerable im-

act on performance. I provides a trade-off between training error

nd the overfitting.

Finally, for LR, a regularization term in the adopted implemen-

ation, the sum of the squared coefficients multiplied by a parame-

er λ ∈ R

+ is added to the objective function. A suitable regulariza-

ion coefficient λ can help to reduce the generalization error with-

ut affecting the training error. The stopping criterion, τ , can be

djusted to find the optimal point to stop training to obtain both

ood accuracy and reasonable time cost. The examined grid values

or all the tuned parameters are listed in the right-most column in

able 4 .

.4. Evaluation metrics

In the evaluation phase, we adopt common evaluation metrics,

amely, accuracy, recall, precision, and F1-measure, to assess the

erformance of our proposed scheme. These metrics are defined

ased on the following intermediate measures.

• True positive (TP): samples correctly classified as positive.

• False positive (FP): samples incorrectly classified as positive.

• True negative (TN): samples correctly classified as negative.

• False negative (FN): samples incorrectly classified as positive.

Accuracy refers to the proportion of correct judgments:

ccu racy =

TP + TN

n

, (2)

here n is the total number of samples used for evaluation.

Precision is the probability that predicted positives are correctly

lassified:

 recision =

T P

T P + F P
. (3)

ecall is the probability of the samples in the positive class being

lassified correctly:

ecall =

T P

T P + F N

. (4)

he F1-measure is the weighted average of precision and recall:

 1 _ measure =

2 × (Recall × P recision)

Recall + P recision

. (5)

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

Fig. 6. Visualization of malware distribution using UMAP.

Table 4

Parameter tuning settings for classification algorithms.

Parameter Classifier Physical Meaning Grid Value

D All classifiers Feature dimension {128,256, ...,1024}

T RF Number of trees {50,100, ...,500}

k k NN Number of nearest neighbors {1,2, ...,9}

C SVM Penalty parameter {10,100,1000}

γ SVM The width of the RBF kernel {0.0001,0.001,0.01}

S MLP Size of hidden layer {10,20, ...,100}

I MLP Maximum number of epochs {10,20, ...,100}

λ LR Regularization coefficient {0.1,1,10,100,1000}

τ LR Tolerance as stopping criteria {0.0001,0.0001,0.001,0.01,1}

5

e

e

i

t

t

c

s

i

p

t

p

r

5

p

m

a

s

t

m

t

.5. Performance evaluation

In this section, we report the results of four experiments to

valuate the performance of the proposed scheme. We use graph

mbedding features, the dimension determined via parameter tun-

ng, and four graph structural features as the input attributes for

he analysis. The first experiment verifies the feasibility of the rein-

erpreted FCG and enhanced graph 2 v ec on malware family classifi-

ation. In the second experiment, the dataset is divided into sub-

ets based on the CPU architecture, and a performance comparison

s conducted on CPU-specific subsets. The third experiment com-

ares the performance of the proposed feature representation with

he features introduced in related work. The last experiment com-

ares the time efficiency of different approaches. All the reported

esults are obtained from 5-fold stratified cross-validation.
10
.5.1. Malware family classification

The first experiment aims to verify the feasibility of the pro-

osed approach of classifying IoT malware samples into known

alware families. Classifying malware with high accuracy can en-

ble prevention, such as malware quarantining or user alerting,

oon after the binary is downloaded to the device. To demonstrate

he feasibility of the FCG with reinterpreted UDFs and the imple-

entation of graph 2 v ec enhanced with literal information, we test

he performance of the following settings.

1. FCG combined with graph 2 v ec labeled with vertex degree

(FCG ×G2V),

2. FCG combined with graph 2 v ec labeled with literal information

(FCG ×LiG2V), and

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

Table 5

Performance evaluation on IoT malware family classification.

Classifier Accuracy(%) Precision(%) Recall(%) F1-measure(%) Training time(s) Testing time(s) Parameter setting

SVM 98.88 99.06 98.57 98.81 335.81 71.06 D = 516, c = 10, γ = 0.001

MLP 98.70 98.65 98.46 98.55 66.62 0.07 D = 900, size = 100, iterations = 50

RF 98.61 99.12 97.24 98.15 122.51 0.34 D = 900, n = 250

k NN 98.60 98.56 98.46 98.55 0.03 36.72 D = 516, k = 1

LR 98.04 98.41 97.04 97.67 80.81 0.03 D = 772, λ= 0.01, tol = 0.0001

Fig. 7. Tuning parameter D using 5-fold cross-validation for SVM. D is selected from

{128,256, ...,1024}.

t

t

t

S

A

l

i

r

m

l

F

o

b

c

g

p

t

f

R

t

t

t

9

s

b

q

b

o

o

s

m

a

r

r

s

b

u

t

s

5

q

c

U

s

i

d

t

s

a

p

f

b

s

S

g

o

a

f

t

o

a

c

c

c

O

v

s

d

s

r

s

5

w

3. Reinterpreted FCG with graph 2 v ec labeled with literal informa-

tion (RFCG ×LiG2V).

Fig. 8 shows the experimental results obtained under these

hree settings. Among the charts in Fig. 8 , (a) to (e) show how

he classification accuracy varies with the feature dimension for

he five selected classifiers. Chart (f) summarizes the results of the

VM classifiers in chart (d), which yielded the best performance.

s the results obtained from the 5 selected classifiers show simi-

ar trends, we take the results from the SVM classifiers, as shown

n (d) and (f), as an example for discussion. (d) shows that the

anking order of the three settings remains the same while the di-

ension parameter changes from 132 to 1,028. RFCG ×LiG2V (red

ine) maintains the top ranking for all dimensions, followed by

CG ×LiG2V (blue line) and FCG ×G2V (green line) in descending

rder of classification accuracy. FCG ×LiG2V outperforms FCG ×G2V

y a large margin. When D = 516 , FCG ×LiG2V improves the ac-

uracy of FCG ×G2V from 97.48% to 98.57%, indicating that inte-

rating literal information into learning can yield substantial im-

rovement in the discriminating ability for the embedding fea-

ures. RFCG ×LiG2V further improves upon the classification per-

ormance of FCG ×LiG2V by a substantial margin. When D = 516 ,

FCG ×LiG2V yields a classification accuracy of 98.88%, suggesting

hat reinterpreting UDFs in the graph helps to enhance the seman-

ic information captured by graph 2 v ec. Furthermore, (d) indicates

hat RFCG ×LiG2V and FCG ×LiG2V yield high accuracy (98.80% and

8.46% at D = 132 , respectively) with comparable lower dimen-

ional embeddings, and the performance appears to be very sta-

le with varying dimensions. On the other hand, FCG ×G2V re-

uires comparatively high dimensional embeddings to achieve its

est performance (97.68% accuracy obtained at D = 1 , 028). Similar

bservations can be made about the results in (a), (b), (c), and (e)

btained from the other four selected classifiers.
11
Table 5 summarizes the evaluation results of all examined clas-

ifiers, and the selected parameter settings are shown in the right-

ost column. All the classifiers yielded near-optimal results with

n accuracy greater than 98.00%. SVM achieved the highest accu-

acy of 98.88%, while RF, k NN, and MLP had slightly lower accu-

acy. LR yielded an accuracy of 98.04%, the weakest of the five clas-

ifiers. Because RFCG ×LiG2V outperformed the other two settings

y a large margin, all the results reported in the table are obtained

sing RFCG ×LiG2V.

As a summary of the first experiment on IoT malware classifica-

ion for all examined classifiers, we can summarize the feasibility

tudy’s results as follows.

1. Integrating literal information of the subroutine names in the

graph 2 v ec model substantially improve the prediction accuracy.

2. Reinterpreting UDFs in the FCGs leads to further improvement

in the prediction accuracy for FCG ×LiG2V.

.5.2. CPU-specific performance evaluation

To reinterpret the UDFs, we used the associated opcode se-

uence to identify subroutines with the same functionality. Be-

ause different CPU architectures adopt different instruction sets,

DF reinterpretation works only for IoT malware compiled on the

ame CPU architecture. Therefore, better classification performance

s expected if IoT malware family classification is performed on a

ataset with all samples collected from a uniform CPU architec-

ure. In the second experiment, we divided the dataset into seven

ubsets containing malware samples compiled on the same CPU

rchitecture. Then, an analysis following the steps in the first ex-

eriment was performed on these seven subsets (Table 5).

Table 6 shows the results for IoT malware family classification

or each CPU architecture. We report only the results obtained

y RF and SVM for better readability: k NN, MLP, and LR showed

lightly inferior generalization performance compared to RF and

VM. For IoT malware family classification, SVM yielded accuracy

reater than 98.92% on MIPS, X86, and SPARC at D = 516 . For two

f the other four remaining CPU architectures, ARM and PPC, SVM

lso achieved accuracy close to 98.92%. SVM yielded inferior per-

ormance only on X86-64 and UNKNOWN. Although slightly lower

han that of SVM, RF also achieved an accuracy greater than 98.64%

n 5 of the 7 CPU architectures.

We investigated why the classifiers showed comparatively low

ccuracy on X86-64 and UNKNOWN. A simple explanation in the

ase of X86-64 is that samples collected on this CPU architecture

omplied on a much wider range of Linux distributions. The in-

reased sample variance renders the classification more difficult.

n the other hand, the subset collected on UNKNOWN contained a

ariety of CPU architectures, but the sample size is reduced con-

iderably compared with that of the full dataset. Moreover, the

istinct instruction sets on different CPU architectures also cast a

hadow on the efficacy of FCG reinterpretation. These two factors

endered the classification tasks more difficult for the UNKNOWN

ubset.

.5.3. Performance comparison with related work

In the third experiment, we compare the proposed approach

ith selected approaches in related work. As reviewed in Section 2 ,

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

Fig. 8. Performance comparison between RFCG ×G2V, FCG ×LiG2V, and FCG ×G2V.

12

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

Table 6

Performance evaluation on CPU-specific malware family classification.

CPU-architecture Classifier Accuracy(%) Precision(%) Recall(%) F1-measure(%)

ARM RF 98.64 92.31 89.90 91.02

SVM 98.85 98.85 98.32 98.57

MIPS RF 99.03 87.14 84.19 85.31

SVM 99.10 98.80 98.72 98.75

X86 RF 98.89 99.36 98.90 99.13

SVM 98.92 99.17 99.05 99.10

SPARC RF 99.08 98.70 92.39 95.07

SVM 99.12 98.84 94.76 96.47

X86-

64

RF 97.61 94.17 89.39 91.41

SVM 97.85 93.52 92.73 93.05

PPC RF 98.69 93.72 89.66 91.49

SVM 98.80 93.43 90.62 91.77

UNKNOWN RF 97.26 97.57 90.61 93.59

SVM 97.91 97.71 95.95 96.75

d

a

a

t

t

S

c

f

S

d

s

p

a

t

c

m

y

s

s

s

t

m

N

t

s

c

s

m

j

m

c

o

c

a

e

t

f

f

o

o

M

a

f

(

c

p

r

c

i

5

p

d

f

f

s

t

a

fi

g

g

T

m

t

t

i

w

i

t

r

e

d

E

o

s

p

O

g

c

t

E

t

T

i

a

i

g

t

t

t

ifferent types of features associated with static malware analysis

re studied in the literature. We select approaches that are easily

daptable for IoT malware classification. Specifically, we implement

he graph-based features introduced by Alasmary et al. (2019) ,

he features based on binary header information presented by

hahzad and Farooq (2012) , the N-gram features obtained from op-

ode sequences introduced by Kang et al. (2016) , and the graph

eatures based on opcode sequences presented by Gülmez and

ogukpinar (2021) . Note that this experiment aims to evaluate the

iscriminating ability of a certain type of static feature not to

earch for the classification model that gives optimal prediction

erformance. Therefore, we choose to implement the five widely

dopted classifiers introduced in Section 4.4 based on these fea-

ures to conduct a fair and general comparison. More specialized

lassification algorithms could work extraordinarily well on one or

ore feature types; searching for such optimal combinations is be-

ond the scope of this work. In this experiment, we used a shuffled

ubset of 10K malware examples for training and a shuffled sub-

et of 10K for testing. The reported results are obtained via 5-fold

tratified cross-validation.

Table 7 shows the results obtained from each type of fea-

ure for all the selected classifiers. The prediction performance is

easured in terms of accuracy, precision, recall, and F1-measure.

ote that the samples are subject to a severely skewed distribu-

ion among different malware families. The reduction in sample

ize of the testing set casts a shadow on criteria other than ac-

uracy because the macro average over the six classes favors re-

ults in small classes. In the following, we use accuracy as the

ain performance criterion. Although other measures are sub-

ect to significant variation compared with the previous experi-

ents, the comparison results adhere to those obtained from ac-

uracy. As shown in the table, the features based on graph the-

ry from Alasmary et al. (2019) yielded greater than 96.64% ac-

uracy for 4 of 5 classifiers; they produced a comparatively low

ccuracy of 91.61% for LR. The features extracted from ELF head-

rs from Shahzad and Farooq (2012) and the opcode-based fea-

ures from Kang et al. (2016) yielded stable accuracy above 95.13%

or all five classifiers. The features learned from opcode graphs

rom Gülmez and Sogukpinar (2021) obtained a very high accuracy

f 98.42% with RF. Meanwhile, it yielded a relatively low accuracy

f 88.82% with LR and an extremely low accuracy of 47.85% with

LP. Thus, the performance of opcode-graph-based features is not

lways stable and may not be suitable for certain classifiers.

Under the RFCG ×LiG2V setting, the proposed graph embedding

eatures yielded the best performance in IoT malware classification

98.89% accuracy with SVM, 85.0% precision with RF, 84.76% re-

all with MLP, and 84.83% F1-measure with SVM). This outstanding

erformance compared with that of existing methods proves that
a

13
einterpreted FCG with graph 2 v ec labeled with literal information

aptures essential discrimination information for IoT malware fam-

ly classification.

.5.4. Time efficiency comparison

In this subsection, we compare the time efficiency of the pro-

osed method with related work. As summarized in Table 8 , we

ivide the malware classification process into reverse engineering,

eature extraction, (model) training, and prediction. The time used

or reverse engineering accounts for applying radare 2 to perform

tatic analysis on a malware binary. The time used for feature ex-

raction accounts for all the time spent transforming the static

nalysis log into a numerical vector ready to be input to the classi-

er. In particular, for the proposed scheme, the time to obtain the

raph representation of an FCG, reinterpret the UDFs, and perform

raph embedding is integrated into the feature extraction time.

he training time constitutes the time cost for building a classifier

odel with all training samples. We report the average time used

o build the classifiers at all steps of the 5-fold cross-validation as

raining time. Note that as the mechanism for parameter tuning

s not directly comparable for different classification algorithms,

e exclude the time spent on parameter tuning from the train-

ng time. The testing time is the time it takes to apply a model

o predict the class label for a test instance based on the vector

epresentation of the sample.

The second column in Table 8 reports the time spent on reverse

ngineering for all compared methods. Because the features intro-

uced in Shahzad and Farooq (2012) can be directly extracted from

LF headers, it does not need a reverse engineering step. On the

ther hand, advanced feature types are generated based on opcode

equences for the other four approaches. Therefore, for these ap-

roaches, reverse engineering is required before feature extraction.

n the evaluation dataset, the average time to perform reverse en-

ineering on a single file using radare 2 is 1.8623 s, a substantial

omputational overhead for malware classification.

The third column in Table 8 reports the time spent on fea-

ure extraction. We can see that the features extracted from the

LF headers as introduced in Shahzad and Farooq (2012) are very

ime efficient, with an average time cost of 0.0620 s per file.

he N-gram extracted from the opcode sequence as introduced

n Kang et al. (2016) also works efficiently on IoT malware with

n average time cost of 0.0128 s per file. The feature introduced

n Gülmez and Sogukpinar (2021) is extracted from a condensed

raph presentation of the opcode sequences, yielding an average

ime cost of 0.1417 s per file. Because computation-intensive fea-

ures such as the shortest path length of the CFGs are considered,

he structural features introduced in Alasmary et al. (2019) require

n average feature extraction time of 1.1566 s per file. The aver-

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

Table 7

Performance comparison with previous work based on static features.

Related work Feature Classifier Accuracy(%) Precision(%) Recall(%) F1-measure(%)

Shahzad and

Farooq (2012)

ELF header SVM 97.39 81.54 81.38 81.42

MLP 96.94 81.35 79.54 80.32

RF 97.55 83.55 80.73 81.91

k NN 95.13 81.00 78.08 79.19

LR 95.53 81.64 77.00 78.64

Avg. 96.51 81.42 79.35 80.30

Alasmary et al. (2019) Graph theory SVM 97.78 83.95 82.56 83.24

MLP 96.64 81.38 82.50 81.89

RF 97.50 83.95 82.01 82.91

k NN 97.61 83.25 82.22 82.72

LR 91.61 76.96 71.55 73.68

Avg. 96.23 81.90 80.17 80.89

Kang et al. (2016) Opcode SVM 96.78 59.51 60.22 59.47

MLP 96.59 59.68 60.08 59.48

RF 97.02 59.58 60.68 59.81

k NN 96.50 58.61 60.16 59.08

LR 96.31 62.01 60.05 60.88

Avg. 96.64 59.88 60.24 59.74

Gülmez and

Sogukpinar (2021)

Opcode graph SVM 94.34 83.91 77.58 80.27

MLP 47.85 6.84 14.29 9.25

RF 98.42 84.28 82.63 83.43

k NN 96.82 81.68 81.31 81.47

LR 88.82 61.07 64.26 62.12

Avg. 85.25 63.56 64.01 63.31

RFCG ×LiG2V Graph embedding SVM 98.91 85.00 84.66 84.83

MLP 98.78 84.86 84.76 84.81

RF 98.59 85.00 83.13 84.04

k NN 98.59 84.69 84.34 84.50

LR 98.40 84.30 84.70 84.49

Avg. 98.65 84.77 84.32 84.53

Table 8

Time efficiency comparison with previous work based on static features.

Related work Rev. eng. (per file) Feat. extr. (per file) Classifier Training Prediction (per file) MTTD (per file)

SVM 5.6182 2 . 22 × 10 −3 0.0642

MLP 12.6789 1 . 43 × 10 −4 0.0621

RF 0.2219 2 . 06 × 10 −4 0.0622

k NN 0.0050 3 . 26 × 10 −3 0.0653

Shahzad and

Farooq (2012)

- 0.0620

LR 5.8607 1 . 39 × 10 −4 0.0620

SVM 1.1986 8 . 50 × 10 −4 3.0197

MLP 16.4680 9 . 96 × 10 −5 3.0190

RF 0.9083 2 . 55 × 10 −4 3.0191

k NN 0.0024 2 . 84 × 10 −3 3.022

Alasmary et al. (2019) 1.8623 1.1566

LR 0.9842 8 . 22 × 10 −5 3.0190

SVM 9.4033 6 . 86 × 10 −3 1.8820

MLP 147.5743 3 . 21 × 10 −4 1.8754

RF 6.4611 3 . 49 × 10 −4 1.8754

k NN 0.0490 4 . 69 × 10 −3 1.8798

Kang et al. (2016) 1.8623 0.0128

LR 6.1600 1 . 57 × 10 −4 1.8753

SVM 477.4096 1 . 75 × 10 −1 2.179

MLP 11.7092 1 . 17 × 10 −2 2.0157

RF 2.6422 2 . 14 × 10 −4 2.0042

k NN 0.2682 4 . 76 × 10 −3 2.0088

Gülmez and

Sogukpinar (2021)

1.8623 0.1417

LR 69.9998 1 . 30 × 10 −4 2.0041

SVM 1.3124 1 . 14 × 10 −3 2.4830

MLP 2.1390 5 . 57 × 10 −5 2.4820

RF 2.9778 2 . 40 × 10 −4 2.4821

k NN 0.0032 2 . 73 × 10 −3 2.4846

RFCG ×LiG2V 1.8623 0.6196

LR 2.8083 5 . 27 × 10 −5 2.4820

Note: All numbers are in seconds.

a

C

i

t

a

b

s

i

c

f

1

s

r

t

a

ge feature extraction cost for RFCG ×LiG2V is 0.6196 s per file.

onsidering that it integrates a subset of the features introduced

n Alasmary et al. (2019) together with the graph embedding fea-

ures extracted by graph 2 v ec, the implementation is computation-

lly efficient.

The training time to build a classification model is determined

y factors such as the dimension of the feature vectors, the data’s

eparability, and the algorithm’s optimization strategy. As shown
14
n the table, for the sake of employing an ensemble of fast linear

lassifiers to perform the classification, RF performs fast training

or all feature settings. All RF models are built within less than

0 s. SVM, MLP, and LR are subject to strong variation from a few

econds to a few hundred seconds, mainly due to the feature rep-

esentation’s change in dimension. As a special case, k NN adopts

he so-called lazy learning strategy that does not require training

 discriminate function from the training data. This lazy learning

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

s

a

o

a

t

o

v

m

d

c

s

d

u

M

g

M

i

o

o

t

a

a

6

s

p

6

m

C

h

e

k

c

s

c

n

A

p

p

n

w

b

m

e

o

6

p

o

c

v

o

s

o

c

v

t

e

v

b

c

7

k

w

w

i

t

t

t

d

s

t

t

e

s

r

n

m

t

s

i

c

p

D

r

i

b

J

C

T

e

c

D

q

D

A

G

R

A

A

A

B
cheme comes with a relatively expensive time cost for prediction

nd a large space cost to keep all the training samples in mem-

ry. Based on the vector representation obtained by RFCG ×LiG2V,

ll five checked classification algorithms reported a fast training

ime of less than 3 s. This is attributed to the strong capability

f graph 2 v ec to capture essential discriminant information with a

ery low feature dimension.

As a key performance indicator for incident management, the

ean time to detect (MTTD) is defined as the average time the

etector takes to identify the threat successfully. The rightmost

olumn in Table 8 reports the average MTTD, which is the time

pent performing reverse engineering, feature extraction, and pre-

iction for all evaluated approaches. A shorter MTTD indicates that

sers suffer from disruptions for less time than with a longer

TTD. As seen from the table, the time spent on reverse en-

ineering and feature extraction constitutes the major part of

TTD. Compared with other methods, the approach introduced

n Shahzad and Farooq (2012) yielded a very short MTTD. The

ther four approaches, which involve a reverse engineering step to

btain the static analysis results, show comparable performance in

erms of MTTD. In particular, the proposed approach reported an

verage MTTD of approximately 2.5 s for all evaluated classification

lgorithms.

. Discussion

In this section, we discuss the limitations of the proposed

cheme and the application scenarios that can benefit from its high

rediction performance.

.1. Limitations of static analysis

The proposed approach is based on reverse engineering IoT

alware binaries to obtain FCGs to understand their behavior.

ode obfuscation is frequently employed by malware attackers to

inder such analysis (Schrittwieser and Katzenbeisser, 2011). Ex-

cutable computation, commonly with the help of software tools

nown as runtime packers, is a process that compresses an exe-

utable file and combines the compressed data with decompres-

ion code into a single executable. When the compressed exe-

utable is executed, the decompression code recreates the origi-

al code from the compressed data and then passes the control.

s reported in Aghakhani et al. (2020) , for the case of Windows

ortable executables, packing is common not only in malware sam-

les (75%) but also in benign samples (more than 50%). The good

ews for IoT malware is that very few cases of obfuscated IoT mal-

are have been observed thus far (Wan et al., 2020). Therefore, we

elieve the proposed approach can be an efficient solution for IoT

alware protection for the time being. Future work will cover an

xtended study on the countermeasures of obfuscation techniques

n IoT malware.

.2. Application scenarios

Note that the proposed scheme works on FCGs and the out-

ut of advanced reverse engineering tools such as radare 2 . More-

ver, obtaining the embeddings using reinterpreted FCGs may in-

ur a prohibitive computation cost on a resource-constrained de-

ice. Therefore, the application of the proposed scheme is possible

nly on IoT devices with comparatively abundant resources, e.g., AI

peakers and home routers. Another plausible application scenario

f the proposed scheme is on a smart home cybersecurity hub that

an provide overall protection of various internet-connected de-

ices from attacks such as malware, stolen passwords, and identity

heft. Finally, the proposed scheme can be applied at security op-

ration centers of enterprises and research laboratories of security
15
endors. In these scenarios, extensive analysis of collected malware

inaries must be performed with high accuracy to enable effective

ountermeasure policies.

. Conclusion

In this paper, we propose a new scheme to apply the well-

nown graph embedding approach, graph 2 v ec, to analyze IoT mal-

are. To improve the generalization performance of the scheme,

e first devise a preprocessing step that reinterprets the UDFs us-

ng their associated opcode sequences to obtain refined seman-

ics from the FCG. Then, we present an enhanced implementa-

ion of graph 2 v ec that effectively integrates the literal informa-

ion of the subroutine names in FCGs into the learned embed-

ing. Finally, the graph embedding features from the proposed

cheme are combined with graph structural features to facilitate

raining models for IoT malware family classification. The effec-

iveness and efficiency of the proposed scheme are evaluated by

xperiments conducted on a large-scale benchmark dataset con-

isting of more than 108K IoT malware samples. The experimental

esults show that integrating literal information of the subroutine

ames into the graph 2 v ec model can yield malware classification

odels with high classification accuracy. Reinterpreting UDFs in

he FCGs leads to further improvement, resulting in an SVM clas-

ifier with a near-optimal accuracy of 98.88% for IoT malware fam-

ly classification. We believe that promising solutions for IoT se-

urity can be developed based on the findings presented in this

aper.

eclaration of Competing Interest

The authors declare the following financial interests/personal

elationships which may be considered as potential compet-

ng interests: Tao Ban reports financial support was provided

y The Ministry of Education, Science, Sports, and Culture,

apan.

RediT authorship contribution statement

Chia-Yi Wu: Methodology, Software, Writing – original draft.

ao Ban: Conceptualization, Data curation, Writing – review &

diting, Supervision, Funding acquisition. Shin-Ming Cheng: Data

uration, Supervision, Funding acquisition. Takeshi Takahashi:

ata curation, Project administration. Daisuke Inoue: Funding ac-

uisition.

ata availability

Data will be made available on request.

cknowledgments

This work was partially supported by JSPS/MEXT KAKENHI

rant Number JP22K12038.

eferences

ghakhani, H., Gritti, F., Mecca, F., Lindorfer, M., Ortolani, S., Balzarotti, D., Vigna, G.,
Kruegel, C., 2020. When malware is packin’ heat; limits of machine learning

classifiers based on static analysis features. NDSS .
lasmary, H., Khormali, A., Anwar, A., Park, J., Choi, J., Abusnaina, A., Awad, A.,

Nyang, D., Mohaisen, A., 2019. Analyzing and detecting emerging internet
of things malware: a graph-based approach. IEEE Internet Things J. 6 (5),

8977–8988 .

ntonakakis, M., et al., 2017. Understanding the Mirai botnet. In: Proc. USENIX Se-
curity 2017, pp. 1093–1110 .

an, T., Isawa, R., Huang, S., Yoshioka, K., Inoue, D., 2019. A cross-platform study on
emerging malicious programs targeting IoT devices. IEICE Trans. Inform. Syst.

102-D (9), 1683–1685 .

http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0004

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060

B

C

C
C

D

G

G

G

G

H

H

H

H

H

K

K

K

K

L

L

L

M

M

M

N

N

N

N

N

N

O

O

P

Q

R
R

S

S

S

V

V
W

W

W

X

X

Y

Z
an, T., Takahashi, T., Guo, S., Inoue, D., Nakao, K., 2016. Integration of multi-modal
features for android malware detection using linear SVM. In: 2016 11th Asia

Joint Conference on Information Security (AsiaJCIS), pp. 141–146. doi: 10.1109/
AsiaJCIS.2016.29 .

haganti, R., Ravi, V., Pham, T.D., 2022. Deep learning based cross architecture inter-
net of things malware detection and classification. Comput. Secur. 120, 102779 .

ortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20 (3), 273–297 .
ostin, A., Zaddach, J., 2018. IoT malware: comprehensive survey, analysis frame-

work and case studies. In: Proc. BlackHat USA 2018 .

’Angelo, G., Ficco, M., Palmieri, F., 2021. Association rule-based malware classifica-
tion using common subsequences of API calls. Appl. Soft Comput. 105, 107234.

doi: 10.1016/j.asoc.2021.107234 .
alal, H.S., Mahdy, Y.B., Atiea, M.A., 2015. Behavior-based features model

for malware detection. J. Comput. Virol. Hacking Tech. 12. doi: 10.1007/
s11416- 015- 0244- 0 .

reene, W.H., 2012. Econometric Analysis. Vol. Pearson series in economics, 7th ed.,

international ed. Pearson Education .
uardian, 2022. DDoS attack that disrupted Internet was largest of its kind in his-

tory, experts say. last accessed, Jul. 10, 2022. https://www.theguardian.com/
technology/2016/oct/26/ddos- attack- dyn- mirai- botnet .

ülmez, S., Sogukpinar, I., 2021. Graph-based malware detection using opcode se-
quences. In: Proc. ISDFS 2021, pp. 1–5 .

astie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning:

Data Mining, Inference and Prediction, 2nd ed. Springer .
aykin, S., 1999. Neural Networks: A Comprehensive Foundation. Prentice Hall .

erwig, S., Harvey, K., Hughey, G., Roberts, R., Levin, D., 2019. Measurement and
analysis of Hajime, a peer-to-peer IoT botnet. Network and Distributed Systems

Security (NDSS) Symposium .
o, T.K., 1998. The random subspace method for constructing decision forests. IEEE

Trans. Pattern Anal. Mach. Intell. 20 (8), 832–844 .

osmer, D.W., Lemeshow, S., 20 0 0. Applied Logistic Regression. John Wiley and
Sons .

ang, B., Yerima, S.Y., McLaughlin, K., Sezer, S., 2016. N-opcode analysis for android
malware classification and categorization. In: Proc. Cyber Security, pp. 1–7 .

awasoe, R., Han, C., Isawa, R., Takahashi, T., Takahashi, J., 2021. Investigating be-
havioral differences between IoT malware via function call sequence graphs. In:

Proc. ACM SAC, pp. 1674–1682 .

uang, B., Fu, A., Zhou, L., Susilo, W., Zhang, Y., 2020. DO-RA: data-oriented runtime
attestation for IoT devices. Comput. Secur. 97, 101945 .

umar, A., Shridhar, M., Swaminathan, S., Lim, T.J., 2022. Machine learning-based
early detection of IoT botnets using network-edge traffic. Comput. Secur. 117,

102693 .
e, Q., Mikolov, T., 2014. Distributed representations of sentences and documents.

In: Proceedings of the 31st International Conference on Machine Learning.

PMLR, Bejing, China, pp. 1188–1196 .
ee, Y.-T., Ban, T., Wan, T.-L., Cheng, S.-M., Isawa, R., Takahashi, T., Inoue, D., 2020.

Cross platform IoT-malware family classification based on printable strings. In:
Proc. IEEE TrustCom 2020 .

i, C., Shen, G., Sun, W., 2021. Cross-architecture internet-of-things malware detec-
tion based on graph neural network. In: Proc. IJCNN 2021, pp. 1–7 .

arzano, A., Alexander, D., Fonseca, O., Fazzion, E., Hoepers, C., Steding-Jessen, K.,
Chaves, M.H., Cunha, Í., Guedes, D., Meira, W., 2018. The evolution of Bashlite

and Mirai IoT botnets. In: Proc. IEEE ISCC 2018, pp. 813–818 .

cInnes, L., Healy, J., Melville, J., 2018. UMAP: uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426 .

uzaffar, A., Ragab Hassen, H., Lones, M.A., Zantout, H., 2022. An in-depth review of
machine learning based android malware detection. Comput. Secur. 121, 102833 .

arayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S., 2017a.
graph2vec: Learning distributed representations of graphs. arXiv preprint arXiv:

1707.05005 .

arayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.,
2017. graph2vec: Learning distributed representations of graphs. CoRR. abs/1707.

05005 .
aseer, M., Rusdi, J., Shanono, N., Salam, S., Zulkiflee, M., Abu, N., Abadi, I., 2021.

Malware detection: issues and challenges. J. Phys. Conf. Ser. 1807, 012011. doi: 10.
1088/1742-6596/1807/1/012011 .

atani, P., Vidyarthi, D., 2013. Malware detection using API function frequency

with ensemble based classifier. In: Security in Computing and Communications.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 378–388 .

go, Q.-D., Nguyen, H.-T., Le, V.-H., Nguyen, D.-H., 2020. A survey of IoT malware
and detection methods based on static features. ICT Express 6 (4), 280–286 .

guyen, H.-T., Ngo, Q.-D., Le, V.-H., 2020. A novel graph-based approach for IoT bot-
net detection. IJISS 19 (5), 567–577 .

nwuzurike, L., Mariconti, E., Andriotis, P., De Cristofaro, E., Ross, G., Stringhini, G.,

2017. MaMaDroid: detecting android malware by building Markov chains of be-
havioral models (extended version). ACM Trans. Privacy Secur. 22. doi: 10.1145/

3313391 .
u, F., Xu, J., 2022. S3Feature: a static sensitive subgraph-based feature for android

malware detection. Comput. Secur. 112, 102513 .
edregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-

del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-

napeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. scikit-learn: Machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 .
16
iang, W., Yang, L., Jin, H., 2022. Efficient and robust malware detection based on
control flow traces using deep neural networks. Comput. Secur. 122, 102871 .

adare2, 2022. last accessed, Jul. 10, 2022. https://rada.re/r/ .
aff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C., 2018. Malware

detection by eating a whole EXE. In: Proc. AAAI 2018 .
chrittwieser, S., Katzenbeisser, S., 2011. Code obfuscation against static and dy-

namic reverse engineering. In: Information Hiding. Springer Berlin Heidelberg,
pp. 270–284 .

hahzad, F., Farooq, M., 2012. ELF-Miner: using structural knowledge and data min-

ing methods to detect new Linux malicious executables. Knowl. Inf. Syst. 30 (3),
589–612 .

u, J., Vasconcellos, D.V., Prasad, S., Sgandurra, D., Feng, Y., Sakurai, K., 2018.
Lightweight classification of IoT malware based on image recognition. In: Proc.

IEEE COMPSAC 2018, pp. 664–669 .
inayaka, K., Jaidhar, C., 2021. Android malware detection using function call graph

with graph convolutional networks. In: Proc. ICSCCC 2021 .

irusTotal, 2022. last accessed: Jul. 10, 2022. https://www.virustotal.com/ .
an, T.-L., Ban, T., Cheng, S.-M., Lee, Y.-T., Sun, B., Isawa, R., Takahashi, T., Inoue, D.,

2020. Efficient detection and classification of internet-of-things malware based
on byte sequences from executable files. IEEE Open J. Comput. Soc. 1, 262–275 .

azzan, M., Algazzawi, D., Bamasaq, O., Albeshri, A., Cheng, L., 2021. Internet of
things botnet detection approaches: analysis and recommendations for future

research. Appl. Sci. 11 (12), 5713 .

u, C.-Y., Ban, T., Cheng, S.-M., Sun, B., Takahashi, T., 2021. IoT malware detection
using function-call-graph embedding. In: Proc. PST 2021, pp. 1–9 .

iao, F., Sun, Y., Du, D., Li, X., Luo, M., 2020. A novel malware classification method
based on crucial behavior. Math. Probl. Eng. 2020 .

u, M., 2021. Understanding graph embedding methods and their applications. SIAM

Rev. 63 (4), 825–853. doi: 10.1137/20M1386062 .

ou, I., Yim, K., 2010. Malware obfuscation techniques: a brief survey. In: Proceed-

ings - 2010 International Conference on Broadband, Wireless Computing Com-
munication and Applications, BWCCA 2010, pp. 297–300. doi: 10.1109/BWCCA.

2010.85 .
hang, Y., Chang, X., Lin, Y., Miši ́c, J., Miši ́c, V.B., 2020. Exploring function call graph

vectorization and file statistical features in malicious PE file classification. IEEE
Access 8, 4 4652–4 4660 .

Chia-Yi Wu received the BE degree in computer sci-
ence and information engineering from Yuan Ze Univer-

sity, Taoyuan, Taiwan, in 2020 and the ME degree from

National Taiwan University of Science and Technology,

Taipei, Taiwan, in 2022. His current research interests in-

clude security for IoT and machine learning.

Tao Ban received his BE degree from Xi’an Jiaotong Uni-

versity in 1999, ME degree from Tsinghua University in

2003, and PhD degree from Kobe University in 2006, re-
spectively. He is currently a senior researcher with Cy-

bersecurity Research Institute, National Institute of In-
formation and Communications Technology, Tokyo, Japan.

His research interest includes network security, malware
analysis, machine learning, and data mining.

Shin-Ming Cheng received the B.S. and Ph.D. degrees

in computer science and information engineering from

National Taiwan University, Taipei, Taiwan, in 20 0 0 and

2007, respectively. Since 2012, he has been on the fac-
ulty of the Department of Computer Science and Infor-

mation Engineering, National Taiwan University of Science
and Technology, Taipei, where he is currently a professor.

Since 2017, he has been with the Research Center for In-
formation Technology Innovation, Academia Sinica, Taipei,

where he is currently a joint appointment research fellow.

https://doi.org/10.1109/AsiaJCIS.2016.29
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0008
https://doi.org/10.1016/j.asoc.2021.107234
https://doi.org/10.1007/s11416-015-0244-0
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0011
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0025
http://arxiv.org/abs/arXiv:1802.03426
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0026
http://arxiv.org/abs/arXiv:1707.05005
http://arxiv.org/abs/arXiv:1707.05005
https://doi.org/10.1088/1742-6596/1807/1/012011
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0031
https://doi.org/10.1145/3313391
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0035
https://rada.re/r/
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0040
https://www.virustotal.com/
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0044
https://doi.org/10.1137/20M1386062
https://doi.org/10.1109/BWCCA.2010.85
http://refhub.elsevier.com/S0167-4048(22)00452-7/sbref0047

C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060
Takeshi Takahashi received his Ph.D. degree in commu-

nications from Waseda University in 2005. He worked for
the Tampere University of Technology from 2002 to 2004

as a researcher, Waseda University as a JSPS research fel-
low from 2004 to 2006, and Roland Berger Ltd. from

20 06 to 20 09 as a business consultant. He has been with

the National Institute of Information and Communications
Technology since 2009 and is currently an associate di-

rector. Further, he was a visiting research scholar at the
University of California, Santa Barbara, from 2019 to 2020.

His research interests include cybersecurity and machine
learning.
17
Daisuke Inoue received his B.E. and M.E. degrees in elec-

trical and computer engineering and Ph.D. degree in en-
gineering from Yokohama National University in 1998,

20 0 0 and 20 03, respectively. He joined Communications
Research Laboratory (CRL), in 2003. CRL was relaunched

as National Institute of Information and Communications

Technology (NICT) in 2004, where he is currently the di-
rector general of Cybersecurity Nexus (CYNEX) and the

director of Cybersecurity Laboratory. His research inter-
ests include practical cybersecurity technologies, and se-

curity visualization.

	IoT malware classification based on reinterpreted function-call graphs
	1 Introduction
	2 Background and related work
	2.1 IoT malware
	2.2 Previous work on malware analysis
	2.2.1 Binary-based methods
	2.2.2 Opcode-based methods
	2.2.3 Graph-based methods
	2.2.4 API-based methods
	2.2.5 Other static features

	3 Motivation
	3.1 Graph representation for malware samples
	3.2 Improvement to

	4 Methodology
	4.1 Reverse engineering
	4.2 Reinterpreting user-defined functions
	4.3 Feature extraction
	4.3.1 Graph structure features
	4.3.2 Graph embedding features

	4.4 Classification methods

	5 Experiments
	5.1 Evaluation dataset
	5.2 Visualization
	5.3 Parameter tuning
	5.4 Evaluation metrics
	5.5 Performance evaluation
	5.5.1 Malware family classification
	5.5.2 CPU-specific performance evaluation
	5.5.3 Performance comparison with related work
	5.5.4 Time efficiency comparison

	6 Discussion
	6.1 Limitations of static analysis
	6.2 Application scenarios

	7 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References

